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This paper presents a method for simultaneous optimal structural and

control design of large flexible space structures (LFSS) to reduce vibration

generated by disturbances. Desired natural frequencies and damping ratios

for the closed-loop system are achieved by using a combination of linear

quadratic regulator (LQR) synthesis and numerical optimization techniques.

The state and control weighting matrices (Q and R) are expressed in terms of

structural parameters such as mass and stiffness. The design parameters are

selected by numerical optimization so as to minimize the weight of

the structure and to achieve the desired closed-loop eigenvalues. An

illustrative example of the design of a two bar truss is presented.

INTRODUCTION

Large structural systems in general and large space structures in

particular present new challenges to the structural dynamicist and the

control engineer as well. Indeed, such large systems may exhibit well over

a thousand vibrational modes usually closely spaced and with little, if any,

damping. Some form of active control is likely to be necessary in order to

meet exacting stability and pointing requirements. In fact, structural

requirements (primarily low mass) increase the need for active control.

Some optimal trade off between structural and control criteria has to be
achieved.

Until recently, the design of control systems for large structural

systems was a two-step procedures: first the structure was designed based on

structural criteria (primarily total weight); then in a second step a

control system (satisfying some desired control oDjectives) was designed for

the structure obtained in the first step. Inasmuch as a low weight (and

thus low stiffness) structure will require high control energy, the design

objectives of the two steps are to some extent contradictory so that an

optimal control design for an optimally designed structure will not in

general result in an overall control-structure optimal design. Both designs

need to be carried out simultaneously.
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LITERATURE REVIEW

The optimal structural and control design of large flexible space

structures was recently investigated by several researchers. Venkayya and

Tischler [I-2] have suggested that the performance index (PI) in optimal

control of structural systems be a measure of the system total mechanical

energy. By appropriately choosing the state and control weighting matrices,

the PI can be expressed as the (weighted) sum of the kinetic, strain and

potential (including control) energies. Knot and Venkayya [3-4] tackled the

s_ructu_al and control optimization problem by minimizing the weight of the

structure with constraints on structural frequencies and the minimum

Frobenious norm of the gain m_trix. This process has to be carried out in

an iterative fashion.

Becus and Lui [5] have proposed a general method to choose state and

control weighcing matrices in optimal control design so as to satisfy

desired closed-loop eigenvalues. This was further extended by Becus and

Sonmez [6] to allow for eigenvector assignment. In this paper we combine

both ideas in order to obtain _ method to carry out simultaneous optimal

structural and control design.

Desired dynamic structural requirements (natural frequencies and

damping ratios for example) can be expressed both in terms of desired

close_-loop eigenstructure (eigenvalues and/or eigenvectors) and structural

parameters (mass and stiffness for example). Using a PI of the form

suggested in [lJ, the elements of the state and control weighting matrices

(Q and R respectively) are also expressed in terms of structural parameters.

Thus, when choosing the Q and R m_trices (using She method of [5-6]) to

satisfy a desired closed-loop eigenstructure (i.e. dynamic structural

requirements), one in fact chooses new strucutral parameters and therefore

carries out a simultaneous optimal control structure design.

In this paper a new design algorithm is developed so that a minimum

weight structure with desired damping and natural frequency of the closed-

loop system can be obtained. We compare the results with [3] in the last

section.

SIMULTANEOUS STRUCTURAL AND CONTROL OPTIMIZATION

Consider a controlled structural dynamic system described by the

discrete (finite element) model

.o

Mr + Kr _ Du (I)

where r is a vector of n physical displacements and the number of control

inputs (forces) u is m. M, K and D are the mass, stiffness and applied load

distribution matrices of appropriate dimensions respectively. Assume that M

and K are positive definite.

The state space representation of Eq. (I) can be written as

= Ax + Bu (2)

where x _ [_T rTl T , (3)

226



- A(p) , (4)

IM 'DIand B ....... = B(p) , (5)

where p is a vector of structural parameters of dimension 1.

The optimal steady-state control is a linear state feedback

u - -Gx . (6)

The state feedback gain matrix G is obtained from LQR synthesis and the

closed-loop system is given by

- (A - BG)x . (7)

LQR synthesis determines a control u which minimizes the quadratic

performance index [I]

PI - f0® [QmrTM_ + Qk rTKr + OruTDTK-IDu] dt (8)

or in the state space coordinates

PI - f_ [xTQx + uTRu] dt (9)

where - Q(P) (10)

and R - [erDTK-ID] - R(p) (11)

for positive scaling parameters Om, @k and @r" In Eq. (8), PI is the

absolute weighted sum of the kinetic, strain and potential energies.

The relationship between characteristic polynomial of the optimal

system and weighting matrices is obtained as follows [7]

I sI - A I BR-IBT

det(sI Z) l

I Q I sI + AT

(12)

or ¢c(S)¢c(-S) - ¢o(s)@o(-s)det[I+R-IHT(-s)QH(s)] (13)

where H(s) is the open-loop transfer function matrix
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H(s) A (sI - A)-IB , (14)

Z is the canonical system matrix, ¢c(S) and _o(S) are the closed-loop and

open-loop characteristic polynomials respectively.

For a given desired closed-loop pole s = sd which is not an open-loop

pole, the determinant in the right-hand side of Eq. (13) must equal zero

when the weighting matrices Q and R take values which yield the desired

closed-loop eigenvalues. In order to use numerical optimization techniques

to solve Eq. (13) for Q and R, we, as in Ref. [8], set the objective

function as

obj = det[I + R-IHT(-sd)QH(Sd )] - 0 (15)

The desired characteristic equation corresponding to Eq. (15) is

j_1 " (s - Sd.)(s + Sd ) = 0
J J

(16)

where Sd. is the j-th desired closed-loop eigenvalue.
J

Q and R are determined by equating coefficients of the terms involving equal

powers of s in Eqs. (15) and (16). This yields

f1(p) = 0

fk(p) = 0

(17)

where k is the n_mber of equality constraints which involve equal powers of

s in Eqs. (15) and (16).

The objective in structural and control optimization is to make the

selection of design parameters so that the structure weight is a minimum and

the specified closed-loop eigenvalues are satisfied. The optimization

problem can be stated as

Minimize the weight W = W(p)

subject to Eq. (17) (18)

and P > P , s - I, -.-, I,
s s

where P denote minimum allowable values of the structural design
s

parameters •
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I LLUSTRATIVE EXAMPLE

In order to illustrate the feasibility of the above algorithm, the
structural two bar truss model shown in Fig. I was considered as a simple
design example. For the geometry shown, the dynamical equations of motion
(Eq. (I)) are

2 0

0 2
rl I + kl I (A,+A2) 2(AI-A2)

ra 12(AI-Aa) 4(AI+A2) r2! Isin(e)

u (19)

K = k z

2 0

2

(Al + A2)

2(Al - A2)

2(AI - A2)

4(Al + A_)

(20)

(21)

are the optimal mass and stiffness of the structure respectively. In Eq.

(19), A I and A2 are the cross-sectional areas of the bars and k_ = E/(5L) is

a stiffness coefficient, E representing the elastic modulus of the bars and

L the length of the members. A control force u is located at the vertex

with 8 being the angle between its line of action and the horizontal, r_

and r2 are the horizontal and vertical displacements of the vertex

respectively.

The dimensions of the structure were given in unspecified consistent
units. The elastic modulus of the members was assumed to be I and the

density p of the structural material was assumed to be 0.001. A

nonstructural mass of 2 units was attached at node 2 and the structural mass

of the members was ignored for simplicity (thus the mass matrix of Eq.

(20)). The actuator and sensor were located in element I connecting node I

and 2. The minimum cross-sectional area was set equal to 10 units for both
member s.

Once the choice of the material is fixed, the design variables are the

cross-sectional areas of the members A_ and A2, the scaling parameters C)m,

O k and Or, and the angle B of the applied load with respect to the

horizontal. The optimal closed-loop eigenvalues are specified as Sd_ = -

w0.0228 + 1.17j and Sd2 -0.361 + 4.81j. Arbitrary lower and upper values

of 0 were set at 30 o and 60 o respectively.

Analytical and numerical computations were carried out using MACSYMA TM

[9] for symbolic algebraic manipulations, MATLAB [10] for matrix

computations and LQR synthesis, and GRG2 [11] for numerical optimization.

The numerical results for several representative optimal designs are listed

in Table I. A discussion of these results appears in the next section.
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DESIGN

I

2

3
4

5
6

Table I. Optimal Two Bar Truss Designs

10'1.98 889.88

7_8.86 78.81

531.74 ! 5'3.02

442.86 I 44.16
311.18 31.03

11'5.36 11.50

A2 WEIGHT

22.18

19.40

7.65

2.84

e
m Ok Or

I i."i'2 '''2.78

I 1.216

I I 1.87

I i 2.25 73.68

I i 3.20I 8.64

0

deg
ii

6O

5553.80

I73.68 60 '[

6O

73.68 60

73.68 6O

ACHIEVED CLOSED-

LOOP EIGENVALUES

-0.5074 ± 1.25j

-0.382 ± 4.82j

-0.0702 ± 1.17j

-0.361 ± 4.81j

i -0.0393 ± 1.17j

-0.361 ± 4.81j

2

F£g. 1 Two Bar Truss
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DISCUSSIONOFRESULTS

For this simple example the six design variables were not independent.
The scaling parameters 0m and 0k appeared in the constraint equations only

as the combination k_Om/Ok. This combination was then used as one of five
independent design variables. To obtain the values of Table I, Om was

arbitrarily set equal to I then Ok was evaluated by multiplying the value
obtained by numerical optimization by k_ = 0.0089.

Since there are five independent design variables and only four
equality constraints, there are manysolutions to the optimization problem.
In order to obtain a unique solution one could arbitrarily fix the value of
one of the five independent design variables or equivalently introduce an
additional constraint.

Of all designs presented in Table I, Design 6 is the best since it
leads to the lowest value for the weight. This "optimal" design leads to a
weight of 2.84 which is less than half of the best design of Ref. [3]
(6.417).

A closer examination of Table I leads to someinteresting observations.
Designs 3 through 6 have weights which are inversely proportional to Ok. In

fact the product OkxWeignt is nearly constant for these four designs and
equal to 24.45. In addition it can be seen that for these four designs the
ratio A_/A2 is nearly constant and equal to 10. It is conjectured that many
other designs could be obtained by choosing areas satisfying this
relationship and calculating the corresponding Ok while keeping the other
design variables constant.

Design I is representative of several designs for which the ratio AI/A _
is nearly constant and equal to 0.1 while Design 2 leads to an angle less
than the upper bound value of 60o. For all designs obtained the product
OkxWeightwas nearly constant and equal to 24.45.

Finally it must be noted that as more weight is given to the control
effort the achieved closed-loop eigenvalues are closer to the desired
eigenvalues. As more weight is being given to the strain energy cost the
total weight decreases.

CONCLUSION

An algorithm for simultaneous structural and control optimization
design of a minimum weight structure with desired closed-loop eigenvalues
was proposed. It has been shownthat structural and control designs can be
obtained by LQR assignment. The design parameters were appropriately
selected by numerical optimization so as to minimize the weight of the
structure and to achieve desired natural frequencies and damping ratios.
The feasibility of the algorithm was demonstrated by applying it to a simple
example. Further work is needed to investigate the application of the
algorithm to large-order systems.
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